Model Evaluation in Medical Datasets Over Time

Helen Zhou*, Yuwen Chen*, Zachary C. Lipton Carnegie Mellon University

Carnegie Mellon University School of Computer Science

t Electrical & Computer

ML models deployed in health systems face data drawn from **continually evolving environments.**

But, researchers proposing such models typically evaluate them in a **time-agnostic** manner.

Methods

- Train up to each "simulated deployment date" & evaluate on all future timepoints
- Training regimes: sliding window, all-historical
 Model classes: LR, GBDT, MLP

• Datasets: SEER, CDC, SWPA, OPTN, MIMIC-IV

Dataset	Outcome	Time Range (unit)	Ν	# pos.
SEER (Breast)	5Y Surv.	1975 – 2013 (year)	462,023	378,758
SEER (Colon)	5Y Surv.	1975 – 2013 (year)	254,112	135,065
SEER (Lung)	5Y Surv.	1975 – 2013 (year)	457,695	49,997
CDC COVID	Mort.	Mar '20 – May '22 (month)	941,140	190,786
SWPA COVID	90D Mort.	Mar '20 – Feb '22 (month)	35,293	1,516
MIMIC-IV	In-ICU Mort.	2009 – 2020 (year)	53,050	3,334
OPTN (Liver)	180D Mort.	2005 – 2017 (year)	143,709	4,635

Results

Time-agnostic Evaluation

(Standard) Reported AUROC

Model	SEER (Colon)	CDC	SWPA
LR	0.867	0.837	0.914
GBDT	0.871	0.850	0.926
MLP	0.873	0.844	0.918

> In standard eval., GBDT & MLP do best.

LR + All-hist. **Over Time**

AUROC Diff. vs. Staleness

Diagnostic Plots (SEER Lung)

- > CDC: relatively smooth, boost in Dec 2021.
- > SWPA: more variation & uncertainty at first.
- > Red line shows over-optimistic standard eval.
- Training regimes:
- > SEER (Colon): all comparable
- > CDC: sliding window best
- > SWPA: all-historical best

Model classes:

- > SEER (Colon): LR better at large staleness
- > CDC: LR better at large staleness
- > SWPA: all comparable

.7 1980 1990 2000 2010 Time (year)	1980 1990 2000 2010 Time (year)		
— Histologic Type ICD-O-3	—— SEER historic stage A (1973-2015)		
—— Histology recode - 8010-8049	—— CS tumor size (2004-2015)		
—— Histology recode - 8140-8389	—— CS version input current (2004-2015)		
—— EOD 4 - nodes (1983-1987)	—— CS lymph nodes (2004-2015)		
—— EOD 10 - nodes (1988-2003)			
—— EOD 10 - extent (1988-2003)	Jump in model performance		
¹⁹⁷⁸ Sim. de	plov. date 2012		

- > 1983: EOD4 introduced, jump in performance
- > 1988: EOD4 removed, EOD10 introduced
- > 2003: EOD10 removed
- > All-historical avoids the large maximum AUROC drop that sliding window experiences

Discussion & Future Work

- Larger datasets in rapidly evolving environments may benefit from sliding window training
- Smaller datasets may benefit from all-historical training
- Introduction and removal of features can result in dramatic changes in performance over time
- If a model were trained on a mixture of distributions that occurred throughout the past, it may be better equipped to handle shifts to related settings in the future

Up next:

- Parallelization of EMDOT
- Extensions to other modalities
- Benchmarking domain adaptation techniques

*equal contribution