

Absent any actual shift in patient status, the *distribution of* observed data would shift, due to clerical changes.

Setup

In any env. e with missing data, we do not observe clean covariates $X \in \mathbb{R}^d$ but instead observe corrupted covariates:

 $\tilde{X} = X \odot \xi$ where $\xi \in \{0,1\}^d$ and $(X,Y,\xi) \sim P^e$. Assume $P(X,Y) = P^{s}(X,Y) = P^{t}(X,Y)$. **Missingness shift** occurs when $P^{s}(\xi \mid \cdot) \neq P^{t}(\xi \mid \cdot)$. ξ^s $\left(\xi^{t} \right)$ \widetilde{X}^{t} source domain s target domain t $\xi_j^t \sim ext{Bernoulli}ig(1-m_j^tig)$ UCAR: $\xi_{i}^{s} \sim \mathrm{Bernoulli}ig(1-m_{i}^{s}ig)$ $m^t \in \left[0,1
ight]^d$ $m^s \in [0,1]^d$

Domain Adaptation under Missingness Shift (DAMS) goal: learn an optimal predictor on the corrupted target data.

Domain Adaptation under Missingness Shift

Helen Zhou, Sivaraman Balakrishnan, Zachary C. Lipton Machine Learning Department, Carnegie Mellon University

Theoretical Results

The Cost of Non-Adaptivity

- The optimal source predictor can perform **arbitrarily worse** than simply guessing the label mean
- If missingness indicators are **observed** and depend on observed covariates, missingness shift can satisfy the covariate shift assumption: $D^{s}(\mathbf{V} + \widetilde{\mathbf{v}}' = \mathbf{z}') = D^{t}(\mathbf{V} + \widetilde{\mathbf{v}}' = \mathbf{z}')$

$$P^{\circ}(Y \mid X = x) = P^{\circ}(Y \mid X = x),$$

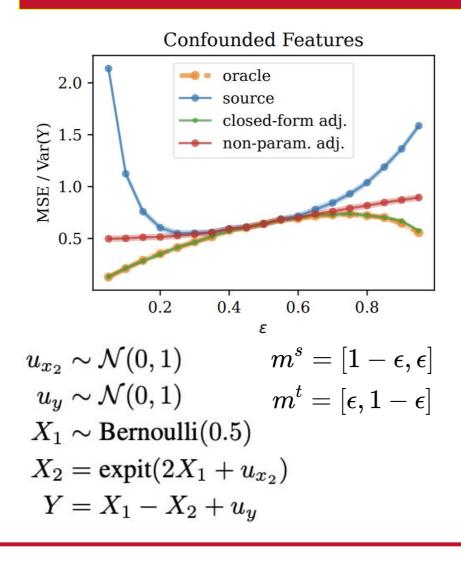
where $\widetilde{X}' = (\widetilde{X}, \xi).$

• For linear models, UCAR \rightarrow form of L2 regularization.

Estimation

- To estimate relative missingness, compute $\hat{q}_{j}^{s} = \frac{count(x_{j} \neq 0)}{n_{s}}$,
- $\bullet \quad \text{w.p. } 1-\delta, \quad \left|\hat{r}^{s \rightarrow t}-r^{s \rightarrow t}\right| \leq \frac{1}{\hat{q}^s}\left(\sqrt{\frac{\log\left(4/\delta\right)}{2n_t}}+\left(1-r^{s \rightarrow t}\right)\sqrt{\frac{\log\left(4/\delta\right)}{2n_s}}\right).$
- Linear estimator: $\beta_t^* = \mathbb{E}[\widetilde{X}^{t\top}\widetilde{X}^t]^{-1} \left(r^{s \to t} \odot \mathbb{E}[\widetilde{X}^{s\top}Y^s]\right).$
- Non-parametric adjustment: compute relative missingness $\tilde{r}^{s o t} = \max(\hat{r}^{s o t}, 0)$ and apply it to source.

Empirical Results



Identification

- Let $b \in \mathbb{R}^d$ be m-read exists some mask ξ s

$${ ilde p}_{x,y} = \sum_{z:z \rightsquigarrow x, \; z \in \mathbb{R}^d} p_{z,y} \cdot \prod_{j=1}^{a} \, (1-m_j)^{x_j} m_j^{z_j-x_j}$$

- Unfortunately, *m* is not in general identifiable.

$$rac{P^t(ilde{x}
eq 0)}{P^s(ilde{x}
eq 0)} = rac{(1-m^t)\odot q}{(1-m^s)\odot q} = rac{1-m^t}{1-m^s} \stackrel{\Delta}{=} 1-r^{s
ightarrow t},$$

 $\operatorname{count}(ilde{x}^s_i
eq 0)$

	$\frac{\textbf{Rednd.}}{m^s? m^t}$	$\frac{\text{Confnd.}}{m^s ? m^t}$	Adult		Bank		Thyroid	
			$m^s \preceq m^t$	$m^s ? m^t$	$m^s \preceq m^t$	$m^s ? m^t$	$\overline{m^s \preceq m^t}$	$m^s ? m^t$
			Linear Re	gression N	lodels			
Oracle	0.178	0.206	0.420	0.362	0.338	0.433	0.298	0.251
Source	1.259	1.103	0.437	0.380	0.371	0.480	0.350	0.320
Imputed	1.002	0.918	0.490	0.483	0.501	0.592	0.306	0.358
Closed-form	0.186	0.209	0.422	0.363	0.339	0.442	0.316	0.291
Non-param.	0.473	0.492	0.420	0.373	0.338	0.459	0.293	0.291
			XGB	oost Mode	ls			
Oracle	0.166	0.200	0.398	0.354	0.287	0.453	0.316	0.274
Source	0.166	0.475	0.399	0.379	0.305	0.500	0.310	0.352
Imputed	1.002	1.157	0.512	0.521	0.492	0.708	0.355	0.441
Non-param.	0.425	0.473	0.399	0.392	0.287	0.503	0.310	0.381
			MI	P Models				
Oracle	0.166	0.201	0.389	0.343	0.295	0.458	0.279	0.230
Source	0.184	0.321	0.399	0.357	0.322	0.499	0.320	0.303
Imputed	1.003	0.924	0.480	0.468	0.484	0.668	0.304	0.345
Non-param.	0.436	0.470	0.389	0.355	0.294	0.487	0.278	0.272

Carnegie Mellon University School of Computer Science

chable from
$$a \in \mathbb{R}^d$$
 ($a \rightsquigarrow b$) if there such that $b = a \odot \xi$.

• Given missingness rates m, for any $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$, we can identify the corrupted distribution from the clean one:

• Instead, we can identify relative missingness rates:

• ...and thus the labeled target distribution from labeled source.

$${\hat q}^t_{\,j} = rac{ ext{count}ig(ilde x^t_j
eq 0ig)}{n_t} \,, \ \ {\hat r}^{s o t} = 1 - rac{{\hat q}^t}{{\hat q}^s}.$$

Conclusion

- Given missing data indicators, miss. shift $can \rightarrow covariate shift$
- Provide identification & estimation results in DAMS with UCAR
- Next: missingness indicators to depend on covariates, or each other; real data expmt.